
A Model Driven Internet of Things
Till Riedel∗, Dimitar Yordanov∗, Nicolaie Fantana∗∗, Markus Scholz∗, Christian Decker∗

∗TecO, Karlsruhe Institute of Technology ∗∗ABB AG Corporate Research Germany

Abstract—The presented work proposes a model driven devel-
opment approach employing flexible code generation strategies
to overcome the technological gap between networked embedded
objects and enterprise back-end system. We design a modeling
and generator toolchain based on state of the art technologies
to support efficient data exchange between hybrid resource
constrained systems. We start by mapping different high level
message description languages to a common meta model. From
those models we generate visual pushdown automata that are
the basis for our code generation and message encoding strategy.
On the basis of this representation we present a practical and
efficient approach to generate binary representation.

I. INTRODUCTION

The term “Internet of Things” [1],[2] alludes to the Internet
as we know it in two different aspects: the network con-
nectivity and the resulting business impact. By bridging the
last barrier of information technology, towards and between
things, we hope to support business processes as they were
not possible before. We are at a point where a huge number of
networked things exist on a local scale. More than 98% of all
microprocessors are part of an embedded system [3] most of
which have some means of communication. Information from
them is used at a very local scope and mostly between a man-
aged set of homogeneous systems, while the biggest business
opportunity lies in the interconnection and communication of
such information sources [1]. Networking objects and devices
is the real added value [4].

A. Coping with Diversity
To enable diverse interaction between all nodes in an

internet a common language is needed. A system that can
include wireless sensor networks and RFID technology would
have to meet a variety of technical requirements. Specialized
protocols for Internet of Things systems (including WSN
and both passive and active RFID) address common resource
constraints like size, energy, communication bandwidth and
computation. Optimizing a system in this regard has proven
rather complex because all factors are interlinked. (As an
example, bigger batteries will relax energy constraints and thus
give more options for higher bandwidth protocols and faster
processors, but will have a negative effect on the size.) This
means that changing a requirement slightly in one dimension
might give a totally different degree of freedom in another.

This may explain the limited impact of standardization
efforts on the inter-networking of things. Recently used
standards for wireless personal area networks like 802.15.4
give tribute to application specific requirements by giving a
number of options to choose from. However, to picture the
consequence, one may consider the difference in the notion
of using a 802.11a or a 802.15.4a compliant device. The
first one will at least guarantee you network access on the
PHY and MAC layer, the second one specifies six different

physical layers that are supported by a MAC layer that can
be driven in a number of different modes and configurations
that all enable different applications. On top of this diverse
set of layers a number of standards for the higher network
layers like Zigbee(Pro), 6lowpan, Wireless HART and ISA
100.11a have recently emerged. Additionally a company that
is serious about harvesting a maximum amount of data from an
Internet of Things will likely have to deal with a diversity of
data formats and protocols. This ranges from Web Services to
Wireless LAN and a diversity of proprietary WSN Protocols to
the EPC Gen2 (over the air) protocol in addition to commonly
used industrial networks like Fieldbus, Profibus or DeviceNet.

Other sources of diversification are different programming
models and tool support, different operating systems, concur-
rency models and programming languages leading to differ-
ent collaboration and data exchange themes. The surge for
highly efficient implementations often translates to even more
protocols and data formats. The result is a world of things
talking in a Babylonian number of languages. Well-intentioned
integration efforts may even leads to an ever increasing number
of different middleware products and customized gateway
solutions that are added to a system landscape.

From the previous analysis follows that diversity is an
enabling factor for an Internet of Things at a local scope.
However, at a global scope diversity contradicts the vision
of an Internet of Things, where few protocols should al-
low access to all worldly resources. As a way out of this
dilemma we propose a paradigm shift from a protocol centric
architecture towards a data centric architecture. This means
the central specification of a system or application is always
a description of the content of communication rather than
the means. Optimally, the final technology mapping can be
done independently, ideally automatically based on the specific
requirements. This means that on a common abstract level
every thing can talk with another. Such development approach
takes into account different necessities when mapping the
Internet of Things vision to an application and its efficient
technological implementation. This can be done with a model-
driven software development (MDSD) process [5] that starts
from an abstract model and derives an implementation. Analog
to human languages, we describe how to build sentences but
neither limit what can be said nor how we communicate
such as using spoken or written words via any available
technical means. The goal is to allow communication across
any technical barrier while obeying resource or contextual
constraints. While we have motivated on an abstract level
how a MDSD process can help to cope with hardware and
system diversity, our prime motivation as application driven re-
searchers and engineers is that we want to do things efficiently
in practice. In the paper we show how a MDSD approach
contributes to an efficient encoding of messages in a wireless



sensing application and enables conversion into a verbose
XML representation (i.e. document-based Web Services) for
backend systems.

II. RELATED WORK

Active messages [6], which are employed by the NesC
language, are a different approach which however is by
design coupled to a certain execution and platform model.
Domain specific abstractions and ecodings for communication
are common in wireless communication. uMiddle [7] or the
CoBIs UPnP gateway architecture [8] try to overcome this
by providing manual message mappings between systems.
Another line of development during the last decades was
focused on using XML Technology for interoperability of het-
erogeneous systems. Binary encoding, especially those based
on XML Schema grammars like BiM [9], paved the way for
efficiently using XML-equivalent encodings from DVB-T to
networked embedded systems [10]. Those systems, however,
rather focus on making XML usable in resource constrained
devices rather than providing tools to map between structurally
equivalent message representations. This can be provided
by a MDSD approach. Using model driven techniques for
message interchange is not entirely new. [11] describe a
system based on Ada for heterogeneous military application. In
recent years, however, much progress has been made in terms
of standardization and advances of model driven software
development tools and techniques. This paper combines those
techniques with advances in the formal modeling and parsing
of structured data formats such as XML and applies it to the
domain of wireless sensing systems. It provides a well-defined
models and meta-models for describing both data-structure
of messages and the execution structure for de-/encoders and
builds a code generator toolchain on top.

III. MODEL DRIVEN FRAMEWORK

Figure 1 outlines a model driven software development
workflow we have implemented. As depicted in the vertical
transformation process, we want to allow a number of tex-
tual and graphical domain specific notations to describe the
contents of the communication. From those domain specific
languages we generate a computational independent model
(CIM), which serves as a common meta model for the code
generation part. The code generation is based on a platform
independent model (PIM). This model specifies how messages
can be consumed by the application. We use an automata
representation for this purpose. Abstract automata and type
annotations (e.g. data type, minimum/maximum value) are
used to generate code for the execution of the automata on
the target platform. Because we can use full code generation
we do not have to specifically define a platform specific model
(PSM). On the horizontal axis of figure 1 we sketch a meta-
model hierarchy that starts with the meta-meta model, which
is the Essential Meta-Object Facility (EMOF), that defines
separate meta-models for both communication messages and
the acceptor automata (M2). They describe the abstract mes-
sage content and the acceptor for a message format (M1).
At the end there is a communication message instance and a
communicating “thing”(M0).

With a common abstract representation of messages in
EMOF we have build a foundation for defining a technology

XSD

message
model

message 
layout

acceptor 
automata

WSN Back-end
 

RFID 

ASN.1UML DSL

PIM

CIM

Code

PSM

common 
meta-model

automata
meta-model

M
O
F

M1

M2

M0

M3

Fig. 1. Model driven development and message exchange scheme

mapping for target code generation. However, EMOF is a
superset of context free grammars[12], which are traditionally
difficult to handle especially when resources are limited.
Therefore we have to restrict the model to support a subset
of context free languages known as regular nested word
languages [13]. (We specifically demand that all elements are
reachable via attribute and containment relations). This class
of languages can model many context-free aspects and prove to
be as robust as regular word languages. Generally determinis-
tic nested word automata have the same expressiveness as non-
deterministic ones. In contrast to regular languages they can
additionally represent both linear as well hierarchical relations
between language elements. Furthermore an important aspect
of modularity is given as the class of nested word languages,
which is closed under intersection and union.

For implementing communication on a channel a linear
encoding of messages (i.e. nested words) is important rather
than the abstract representation. Any such encoding can be
accepted by a special class of pushdown automata called
visibly pushdown automata. It turns out that visibly pushdown
languages are suited to model most structured document
formats that are used for data exchange. Especially the ex-
pressiveness of schema-based XML can be represented. The
visibly pushdown automata (VPA) are the basis to develop
a model to text transformation that implement accepting and
emitting messages. In a first step the structure of the automata
can be directly translated to control flow. In a second step the
specific encoding is implemented by specifying templates for
accepting or emitting concrete encoding symbols based on the
transitions in the automata. The runtime system thus consists
of interconnected communicating automata that can be used
to accept and translate any concrete encoding that was defined
as a derivation of the abstract message model.

Automata are a good compromise between an abstract
and formal representation of data formats and a low-level,
imperative solution to describe a computer system. They can
be easily constructed on the basis of the abstract grammar of
the language they should accept and can be mapped efficiently
to soft and hardware. Especially embedded designs are tradi-
tionally affine to automata because of their efficiency on non-
parallel, pipeline-less MCU and their deterministic behavior.
Finite state machines are especially well understood. The
problem is that they are restricted to regular languages, which
are generally not fit to describe many data models. Push-down
automata provide an alternative for context-free grammars, but
only in the non-deterministic form. The decision to restrict
ourselves to nested word languages as outlined, gives us



beyond other properties the possibility to use deterministic
visibly pushdown automata. Those can provide the basis for
code generation. Information exchange and encoding is done
via the bisimulation of the acceptor automata: One automata
accepts a linear encoding from the program and emits symbols
that are transmitted and thus drive the remote automata.

We modeled the visual pushdown automata (VPA) as an
Ecore meta model in accordance to [13]. It is not necessary to
model the stack alphabet Γ explicitly. Γ and the alphabet of
symbols Σ is defined implicitly by references and attributes of
the original common data model that are referenced directly by
the callTransition, localTransition and returnTransition. This
allows to apply data type restrictions (such as integer type or
min/max values) to the accepted symbols that are not captured
by the VPA itself. The VPA is constructed using a model-
to-model transformation from the original Ecore Model. The
models are both based on EMOF and can be interchanged
using XMI, which allows us to use various transformation
frameworks. The current implementation uses plain java code
using Eclipse Modeling framework (EMF) bindings to perform
a depth-first search on the model. We transform the Ecore
graph by performing a depth-first search on the graph starting
at the root element of the message. We follow all contain-
ment references and attributes in the Ecore Model creating
a callTransition when we progress down a reference link or
a attribute relation and a returnTransition as we return. We
further construct additional looping callTransitions for Ecore
classes and attributes, that can have multiple occurrences, and
epsilonTransition for elements, that can be skipped. Figure 2
shows a VPA for a simple sensor message . One can see that
the call and return symbols match the references and attributes
in the model.

q0 q1

q2

q3

q4

q5 q6

q7 q8

q9

q10q11q12

q13

q14

q15

q16

q17

sample, γs

ε time, γt

ε

tim
e, γ

t te
m

p
,γ

τ

ε

te
m

p
,γ

τ

accl, γa

ε

x, γx

x, γx

y
,γ

y
y
,γ

y

z, γzz, γz

a
ccl, γ

a

lig
h
t,γ

l

ε

lig
h
t,γ

l

f
o
r
ce

,γ
f

sa
m

p
le, γ

s

f
o
r
ce

,γ
f

Fig. 2. VPA that accepts linear encoding of simple Data Model

Not all semantics of the message meta model can be
captured by the VPA. In order to minimize the automata for
code generation we currently create a loop for elements within
the automata, if the maximum cardinality of a reference is
bigger than 1. This means that for bounded relations the VPA
currently accepts a superset of the data model. However, we
do not lose this information for later code generation steps,

as the original model is linked via references in all automata
transitions. If it is e.g. necessary to do a runtime validation of
messages this information can be exploited if needed. There
are other cases, where additional information is of critical
value to design optimal encodings of data. We e.g. exploit the
data type (integer, timestamp, string, . . . ) information to select
a value encoder/decoder that is called to consume/produce
values (in contrast to pure structure). Because this scheme
is extensible and only needs to be exploited for specific
encoders, we can add various value restriction to the meta-
model. Currently we support arbitrary minimum and maximum
values as well as precision information, e.g. a minimal step of
0.1 points. We use annotations to reflect the restriction of real
sensor values: a temperature value with a range from −20 to
80 ◦C with a resolution of 0.1 ◦C can be encoded in 10 bits.

A. Aspect-oriented Code Generation

From the given model the code generator should be able
to produce efficient code for any number of platforms. This
implies optimizing both code and data structure automatically
under given requirements and goals. Theoretically this means
that code generation has to be handled differently for each
platform. While code generation always requires a one time
effort per target, it eliminates the need for re-implementation
for different message protocols. The advantages of removing
such redundancies are manifold beyond saving routine work.
Especially code maintenance can be done much better: pos-
sibilities for bugs are reduced and improvements propagate
more quickly.

[14] shows how different software configurations can be
efficiently generated using an aspect oriented code generation.
We adopt this approach using the xPand template language
to implement the code generator. All refinements are encoded
as aspects of the basic automata control flow. Different input
and output aspects can be added to the transitions of the
pushdown automata via a configuration file. This allows the
automatic creation of eclipse code generator plug-ins for any
combination of model source and target platform. Compiler
and framework support is offered by eclipse builders that can
be customized via the plug-in work flow. Triggering code gen-
eration will automatically create or update jar or self-contained
binary libraries, that can be linked into the target system.
An encoding is accepted by reading symbols from an input.
Input aspects implement this reading operation. Generally we
implemented three different kinds of readers, a bitwise stream
reader, a event reader and a depth-first tree reader for in-
memory representations. The reader code generation is done
locally for each automata state, code generation solely relies
on information associated with the current automata transition.
Output aspects are added in an analogous way to write either
to a stream or to a structured output. This way the automata
can perform transcoding between any number of formats, that
can be constructed based on the abstract model.

IV. EFFICIENT BINARY ENCODING

Choosing an encoding that fits our needs we exploited the
fact that pushdown automata are a good means to compress
data efficiently. We only transfer a minimum amount of
data needed to encode the change in the acceptor automata.



Encoding 1 XML GZip XMill VTD ConCom generated
size (byte) 391 198 210 840 32 20
time (ms) 24.44 12.38 13.13 52.50 2.00 1.25

energy (µJ) 200 101 108 430 16 10

TABLE I
COMPARISON OF ENCODING PERFORMANCE

CALLING GZIP 1.3.12, XMILL 0.7, VTD-XML 2.4 WITHOUT ADDITIONAL ARGUMENTS

We further use the data type restriction connected with the
automata state to choose an efficient encoding for a value. A
binary 1 is emitted, if a path in the automata is taken and
0 otherwise. Transitions are ordered by the number of their
target state. If only one choice is left no binary symbol is
emitted. If an element contains a value it is encoded with the
least possible bit size according to the minimum, maximum
and stepping restrictions. All values are bit packed. Our current
encoding resembles many parts of the BiM payload encoding
for XML [15]. We, however, considerably extended the data
type encodings exploiting existing and newly defined data
type restrictions such as minimum and maximum as well as
precision based value restrictions, that can reduce the payload
even more drastically.

In order to confirm the efficiency of our binary encoding,
we compared the resources needed to transmit an encoded
packet. We compared the document produced by the generated
encoder to a “naive” encoding like XML as well as packed
XML documents using GZIP and the XML-aware XMill
compressor. Furthermore we added a comparison to VTD-
XML that provides support for effective processing of received
data for embedded systems. The comparison in table I includes
the size of the ConCom encoding, which is used by the
native application convergence layer (ACL) of the Particle
Computer [16]. The format uses binary encodings together
with a human readable token format (ConCom tuples). While
the results for the XML formats could only be gathered from
simulation due to the lack of code and data memory for a
target implementation, we could compare the generated target
code to the ConCom code for the pPart 2/32. This platform
is a typical resource constrained networked embedded system
with a 5 MIPS pic18f6720 8bit MCU and a TR1001 869MHz
radio. We also compared the implementations based on the
resources needed on the target platform. We could confirm that
the generated code added no overhead to the code size. Both
programs use 40 kByte of the available 128 kByte of code
memory. Concerning memory usage we could see a slight shift
towards statically allocated memory in the program using the
generated code, which needs 604 instead of 560 byte of RAM.
At the same time the maximum amount of memory allocated
dynamically on the stack during runtime was reduced from 118
to 80 byte in comparison to the manually optimized code.

V. CONCLUSION AND FUTURE WORK

In this work we proposed a model driven development
approach to overcome the diversity of communication in
an Internet of Things. We have shown how the principle
steps of such an approach can be applied to the domain of
message exchange between networked embedded system such
as wireless sensor nodes and classical back-end systems. The
work described in this paper shows how by using a model
to model transformation we derive a abstract acceptor model.

Based on visibly pushdown automata that are the basis for
code generation we can build resource efficient encoders and
decoders. Furthermore we can automatically translate between
different encoding schemes that can be freely chosen by
domain specific requirements.

We designed a model driven development framework using
this approach that generates a common model representation
of data formats from diverse sources, which we will report on
in future papers. Based on this code generation framework we
have already implemented a gateway system, which provides a
highly efficient communication interface to arbitrary wireless
sensor network services via a Web Service interface. We
are also working on different cross-layer optimization based
on this MDSD toolchain. Using the proposed scheme we
can provide both optimization and better platform integration
while retaining a top-down domain specific view on message
exchange. We believe that this a key aspect in developing
future proof wireless sensor applications and to accelerate a
real Internet of Things in general.

VI. ACKNOWLEDGMENT

This work was partially funded by the German Federal
Ministry of Education and Research (BMBF) as part of the
Aletheia project.

REFERENCES

[1] I. T. Union, “The internet of things.” ITU Internet Reports, 2005.
[2] N. Gershenfeld, R. Krikorian, and D. Cohen, “The internet of things.”

Scientific American, vol. 291, no. 4, p. 7681, 2004.
[3] J. L. Turley, The essential guide to semiconductors. Prentice Hall PTR,

2003.
[4] J. Buckley, “From RFID to the internet of things: Pervasive networked

systems,” in Final Report. Brussels: CCAB, 2006.
[5] T. Stahl, M. Voelter, and K. Czarnecki, Model-Driven

Software Development: Technology, Engineering, Manage-
ment. John Wiley \& Sons, 2006. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1196766

[6] T. V. Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser, “Active
messages: a mechanism for integrated communication and computation,”
ACM SIGARCH Computer Architecture News, vol. 20, no. 2, p. 256266,
1992.

[7] J. Nakazawa, H. Tokuda, W. K. Edwards, and U. Ramachandran, “A
bridging framework for universal interoperability in pervasive systems,”
in Proceedings of the 26th IEEE International Conference on Distributed
Computing Systems, 2006, p. 3.

[8] T. Riedel, C. Decker, P. Scholl, A. Krohn, and M. Beigl, “Architecture
for collaborative business items,” Lecture Notes in Computer Science,
vol. 4415, p. 142, 2007.

[9] U. Niedermeier, J. Heuer, A. Hutter, W. Stechele, and A. Kaup, “An
MPEG-7 tool for compression and streaming of XML data,” in IEEE
International Conference on Multimedia and Expo, 2002, p. 521524.

[10] C. Werner, C. Buschmann, and S. Fischer, “WSDL-driven SOAP com-
pression,” International Journal of Web Services Research, vol. 2, no. 1,
p. 1835, 2005.

[11] C. Plinta, R. D’Ippolito, and R. V. Scoy, “A specification and code
generation tool for message translation and validation,” in Proceedings
of the 1998 annual ACM SIGAda international conference on Ada.
Washington, D.C., United States: ACM, 1998, pp. 276–286. [Online].
Available: http://portal.acm.org/citation.cfm?id=289649

[12] M. Alanen and I. Porres, “A relation between Context-Free grammars
and meta object facility metamodels,” Mar. 2003.

[13] R. Alur and P. Madhusudan, “Adding nesting structure to words,” 2009.
[14] M. Voelter and I. Groher, “Product line implementation using Aspect-

Oriented and Model-Driven software development,” in Software Product
Line Conference, 2007. SPLC 2007. 11th International, 2007, pp. 233–
242.

[15] J. Heuer, C. Thienot, and M. Wollborn, “Binary format,” Introduction
to MPEG-7: multimedia content description interface, p. 61, 2002.

[16] C. Decker, A. Krohn, M. Beigl, and T. Zimmer, “The particle computer
system,” Proceedings of the 4th international symposium on Information
processing in sensor networks, 2005.


