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Abstract—Accurate location measurement is an important
research topic in Pervasive Computing systems and applications.
To achieve high performance measurements, the knowledge of
the quality of a measurement, a sensor cue, or an inferred
location value is required. This paper presents a novel approach
in the deliverance of an independent, unified Quality of Location
(QoL) value for Location systems. The proposed approach is
highly flexible, independent of technology and location inference
mechanisms and approaches, integrable into any existing location
system, and does neither require knowledge of sensor, nor of
application characteristics. The paper proposes both a method
to retrieve QoL for a given system, and shows its application in a
setting using a simple ultrasound location system. Retrieving QoL
requires a multi step process including a unsupervised subtractive
clustering method for initial learning, and a supervised network
based fuzzy inference systems (ANFIS) for refinement of the
parameters. The approach described can be used in settings using
heterogeneous systems, devices, and sensors. It is also usable at
any abstraction layer and is able to run on small sensor node
devices. Technical foundations of the algorithms are an adaptive
network based fuzzy inference systems (ANFIS). In this paper
we will show the technical principles, its application and evaluate
the performance of the system.

I. INTRODUCTION

Location has been an important contextual information
for Ubiquitous Computing Systems. Location information
measurement is based on a large variety of approaches and
methods, such as ultrasound time-of-flight, RF signal strength,
massive RFID deployment, UWB measurements, or GPS read-
ings. In many Ubiquitous Computing settings an opportunistic
approach is used, e.g. a mix of different simple, inexpensive,
and heterogeneous technologies. This leads to the often un-
known and mostly low quality of the resulting measurements.
A wide range of approaches have been developed to take
counter measures against the negative impact, when inferring
location from error-prone measurements. One way to address
this problem is the multi-sensor fusion, other methods use
filtering techniques, and many a combination thereof.

This paper addresses an important problem which is placed
before processing of location information through fusion or
filtering: estimating the quality of the measurements. Our
approach will return a unified, thus modality, algorithm, and
sensor fusion stage independent value, describing the quality
of any measurement value. Such a quality measure has several
applications in Ubiquitous Computing settings, and we will
show how it can be used to improve location estimation in
real-world settings.

A simple, but typical example setting should make the
potential more clear. Figure 1 shows several objects in an
environment, which are able to measure the distance to other
devices in vicinity. It is desired to select the best measurement
alternative, using a comparable quality metric. For instance,
when reading the distance from A to B, either the direct
measurement or the indirect measurement A-C-B of distances
could be used. Due to lower quality in short-distance reading
(0.7), the indirect instance of A-C-B might result in better re-
sults (0.9x0.9). Another application is the selection of the best

Fig. 1. Objects A-D in an environment with their quality based distance
measurements

sensor readings from multiple sensors. For example, device
C and D have several types of location sensors that operate
in parallel: a magnetic field strength sensor and an ultrasonic
sensor. Typically, a magnetic field sensor can provide high
quality readings in near field, while ultrasound provides better
quality at medium distances, but only when there are not
reflections in the environment due to obstacles. The devices
equipped with both sensors, allow the usage of a quality factor
to decide which reading to process at what time. It is important
to note, that often the characteristics of the sensors are not
known. The quality factor that we present in this paper does
not require such knowledge, but is able to determine and
describe quality of a measurement outcome independent of
the underlying sensor model.

A third motivating application is higher-level fusion of
different types of readings. For example, from the above
distance readings A-B-C and C-D, local position maps are
created. The overall quality when joining them, leads to three
options: Either A-B-C and C-D do not have a quality measure
of their local maps, one of them has a quality measure, or both
have a quality measure. Our approach is capable of handling
all three situations and hence providing the best support for
a fusion algorithm. It should be noted, that location map



fusion can be carried out ad-hoc, without previous knowledge,
and that the fusion algorithm does not need to know any
characteristic of the underlying recognition method, sensor
type, location or movement model, or similar in order to
work correctly. In summary, the proposed approach has large
potential for typical Ubicomp location systems that contain
• Devices equipped with low-tech, simple sensors
• Heterogeneous settings with various type of sensors,

processing methods
• Multi-step sensor fusion
• Unknown characteristics of the sensors, processing algo-

rithms
• Ad-hoc fusion of independently inferred location infor-

mation with known execution time
For estimation of the Quality of Location (QoL) function,
our system approach uses a two step self-organizing, partially
supervised learning for constructing the quality measure. After
learning the quality classification function - which is carried
out on a PC in a training phase once for a given device or
system - the classification system is able to operate directly
on resource-constrained devices. It should be noted, that our
system instantaneously delivers quality values for any input,
spontaneously and ad-hoc. In contrast to popular Bayes-
network based approaches in location system, e.g. Particle
filter, our approach does not require knowledge of previous
states of the overall system, e.g. a movement, to estimate the
measure.

II. RELATED WORK

Sensor fusion is widely applied for improving the location
estimation. Kalman filter [1] utilizes sensor fusion of partly
redundant measurements and from different sources, e.g. in-
ertial system and GPS, to minimize the measurement errors
and to reduce noise. The authors in [2] applied a distributed
Kalman filter across a column of cars to improve location
estimations when merging each other’s local distance and a
global GPS derived location. Dead Reckoning [3] predicts
future positions by continuing the trace of a moving object
from a known position, using last known direction and speed.
These approaches always compute the most probable state
respective location, even if it’s poor, and return it back to
the rest of the system. A further qualification, e.g. the level of
accuracy, is not given.

The work in [4] estimates the accuracy in terms of meter
and present it to the end user. The interpretation is left to
the user and is not included for algorithmic processing to
improve the location estimation. In [5] the authors present
a RSSI-based iterative precision-based location algorithm for
wireless ad-hoc settings, which compensates statistically for
measurement errors. The error is uniformly quantified, but is
tightly coupled to the concrete implementation. Our approach
provides a unified measure, which is independent of concrete
implementation and allows to include accuracy for further
processing.

Related work using machine learning techniques to evaluate
sensor performance was already done for fault detection. [6]
suggests the use of Auto-Associative Neural Networks to
detect faulty sensors in an aircraft engine. However, instead
of detecting a binary fault state and exploiting redundancy, we
focus on arbitrary accuracy.

Previous work [7] exploited a Fuzzy Inference System
to estimate reliability of context classification based on the
available information. This paper extends this work to cover
another class of sensing systems namely relative location
systems.

III. QOL ESTIMATION PROCESS AND SYSTEM

The proposed QoL function is build using a two-step esti-
mation process: First a complete unsupervised cluster building
process, where only input values - e.g. sensor values or
values from other sources are fed in. Second, a supervised
process, where these clusters are identified and refined using
a supervised method. In this second step, both input values
and ground truth are presented to the system, thus enabling it
to identify the correct quality value for any input value(s) to
the system. By correct we mean, that the proposed approach
ensures that either the quality value can be correctly identified,
or the quality value of 0 is returned. After these steps, the
quality analysis model can be constructed automatically, and
a quality analysis module can be generated from this model au-
tomatically. The generated quality module is independent from
the concrete interpretation module (figure 2) of the system,
thus the same quality module may be used for different types
of interpretation modules that use the same input parameters.

Our overall system architecture is depicted in figure 2.
The resulting overall system can be split into two parts: A
Interpretation module, where the main estimation and interpre-
tation of measurement are carried out, and a quality analysis
module. Primary input to the system are used in both modules.
Primary input could be one or several cues derived from sensor
readings after feature abstraction, direct sensor readings, fused
sensor information or abstracted sensor information e.g. a
value describing contextual parameters. The values can also
be mixed, and in most cases there are several input sources,
so the primary input is often a vector of (sometimes complex)
values. For the quality analysis module, additional input may
be added, that mostly refer to environmental influences of the
quality. These inputs are used to improve the quality measure
depending on the situation the system was in. Again, such
input may be sensors - e.g. sensor directly from the device
- abstract context information retrieved from other devices
in the environment or fused or estimated cues from sensor
readings after feature extraction. The output parameters of the
Interpretation module are location classes or measurements,
while the quality analysis module outputs a quality measure.
The measured quality is a unified value, describing the quality
of the measurement in the interval between [0..1]. It is
important to note, that both modules can operate completely
independently, and that input parameters may only or partially
come from one single device, or from the same device where
the modules and/or the application is running at. This gives
maximum flexibility for constructing a location system.

IV. ONLINE RATING SYSTEM

The quality analysis system holding the information about
the interpretation modules error needs to meet some expenses
to deliver a correct result and to still be executable on an
embedded device. Most of the calculation effort is excluded
in the offline system identification to keep the online system as
efficient and accurate as possible. A fuzzy set theory approach



Fig. 2. Schematics of a general system for location measurement or
classification with a parallel system for quality analysis.

is used for the online rating system, because the modulation
is more suitable and much more flexible than probabilistic
methods.

Due to various kinds of errors a measured location is only
accurate to a certain degree. We reflect this fact by saying that
a measurement is more or less a member of a measurement
result. Note that we do not express the probability of a value.
In contrast to probabilistic interpretation a membership can
be expressed for several fuzzy measurements. For example,
if you measure semantic location for two neighboring offices,
standing between the offices is easy to express with fuzzy sets
but hard and insufficiently to express with probabilistic. A
fuzzy set for each office, which is needed anyway, is enough
to express this situation. Between the offices a membership to
both sets is non-zero. If probabilities are used there are two
states representing the two offices. A situation between the
offices would require a new state ”between” and a probability
for the state to be true - leading to a more bulky, complex and
resource consuming representation. This is also one reason
why fuzzy logic suits more the human understanding and
thinking.

A fuzzy inference system (FIS) is a system consisting of
a fuzzification, a projection of crisp values onto fuzzy sets,
a set of fuzzy rules describing the relationship between input
and output and a defuzzification which is a back-projection
from fuzzy onto crisp. In general, each rule consists of an
premise and an conclusion part. The premise is a conjunction
of fuzzified values. If the conclusion consists of more than
one value, the values are combined through a disjunction.
The defuzzification combines all rules and projects the fuzzy
outcome onto a crisp value.

A. Fuzzy Representation
A general fuzzy set (x, µÃ(x)) is a tuple of a value x and a

membership µÃ(x). The membership function µÃ : U → [0, 1]
expresses the degree an element belongs to the fuzzy set Ã. In
a crisp set A the membership µA : U → {0, 1} would equal
1 for all members. Typical fuzzy membership functions are
gaussian-, triangular-, trapezoid-, etc. functions µ : U → [0, 1]
with a maximum of one and a minimum zero. In general the
fuzzy sets are an extension of the crisp set theory, and therefore
fuzzy logic is an extension of the boolean logic. The fuzzy
equivalent of boolean operators are functions f : [0, 1]2 →
[0, 1].

Applied to a fuzzy qualitity measure, which should represent
the accuracy of a measurement, algorithm and/or classification,

a fuzzy tuple needs to be specified accordingly as (pt, qp,t).
The quality measure itself is expressed through the value
qp,t of the membership function µp̃(−→v t,

−→u t) = qp,t with−→v t containing the information resulting in pt, the measured
location value pt itself, and some additional information −→u t

about environmental influences on the measurement. the entire
information and the measurement are taken at time t. The
question which now arises is how to obtain the quality measure
qp,t without specifying a membership function µp̃ by hand.

B. Membership Function for Quality
The quality measure is obtained through a FIS itself, which

is in our case rather (ab-)used as a complex membership
function µ(pt,

−→v t,
−→u t) ≡ µp̃(−→v t,

−→u t) = qp,t. It is reasonable
to see the complex membership function as the combination of
memberships of all possible fuzzy measurements. Looking at
the complete quality management system it is this that makes
it possible to integrate this FIS as a membership function
into another FIS underlining the compositional features of the
system. The properties of a FIS systems are advantageous for
our purpose: It can be automatically constructed, it allows to
easily identify unknown inputs and its rule structure guarantees
a deterministic calculation effort. Automatic construction is
required as it is in most cases not practical to perform manual
supervised measurement runs.

Takagi, Sugeno and Kang [8][9] (TSK) fuzzy inference
systems are fuzzy rule-based structures, which are especially
suited for automated construction. A feature of TSK-FIS is
that unknown data are mapped to the zero quality value. Note
that this is in contrast to other approaches as Particle filters,
where unknown data produce unforeseeable, arbitrary results.
With the TSK-FIS the consequence of the implication is not a
functional membership to a fuzzy set but a constant or linear
function. The consequence of the rule j depends on the input
of the FIS:

fj(pt,
−→v t,

−→u t) :=
n∑

i=1

aijvi +
l∑

i=1

a(i+n)jui

+a(l+n+1)jpt + a(n+l+2)j

The linguistic equivalent of a rule is formulated accordingly:

IF F1j(v1).. AND F(n+1)j(u1).. AND F(l+n+2)j(pt)

THEN fj(pt,
−→v t,

−→u t)

The membership functions of the rule are non-linear Gaussian
functions.The antecedent part of the rule j determines the
weight wj accordingly:

wj(pt,
−→v t,

−→u t) :=
n∏

i=1

Fij(vi) ·
l∏

i=1

F(i+n)j(ui) ·F(l+n+1)j(pt)

The projection from input −→v p̃ := (pt,
−→v t,

−→u t) onto the
quality measure q̂p,t is a weighted sum average, which is
a combination of fuzzy reasoning and defuzzification. The
weighted sum average is calculated according to the rules
j = 1, .., m as follows:

S(−→v p̃) :=

∑m
j=1 wj(−→v p̃)fj(−→v p̃)∑m

j=1 wj(−→v p̃)



The TSK-FIS S maps onto a set Q̂, which is not a desirable
quality measure since its boundaries cannot be determined.
The value S(−→v Q) needs to be normalized to fit in a designated
set Q of quality measures, which also fits the definition of a
resulting set [0, 1] of a membership function.

1) Normalization of FIS Result: Due to the construction of
the TSK-FIS the mapping is not restricted to the particular
interval [0, 1]. The error between designated and actual output
is distributed around one and zero, so values above one and
below zero are possible. These values need to be normalized
to the interval Q = [0, 1] of the desired quality measure and in
conjunction to meet the demands of a membership function.
The normalization is done via a function L that maps onto
the interval Q = [0, 1] or onto an error state ε. An error
state ε represents the quality measures which could not be
mapped onto the interval Q = [0, 1] in a semantically correct
way. The values lower than −0.5 would represent an error for
the designated output after the normalization. A semantically
correct interpretation of the value is that it belongs to zero with
a mapping error. These circumstances are the same for values
over 1.5 and the designated output zero. So values below −0.5
and above 1.5 are mapped with the function L onto the error
state ε. Considering this the normalizing function L is defined
as follows:

L(x) :=





|x| if − 0, 5 ≤ x < 0
x if 0 ≤ x ≤ 1
2− x if 1 < x ≤ 1, 5
ε else.

The quality measure is computed by the TSK-FIS S composed
with the normalizing function L:

µ :
{ V1 × ...× VN × UL × ...× UL × P → Q ∪ ε

(pt, v1, .., vn, u1, .., ul) 7→ L ◦ S(−→v p̃)

The system to calculate the (normalized) quality measure is
referred to as the function µ from now on. This complex
membership function then gives the final measure of the
location quality measure q.

V. OFFLINE SYSTEM IDENTIFICATION

The relationship between the system error, the input/output
and environmental influences is hardly specifiable in a manual
process, especially for a high diversity of influences on the
system error. We therefore use a set of automatical learning
and system identification algorithms to obtain the quality
analyzing systems. Although it is shown that a FIS can
be infinitely precise using an infinite set of rules [10], we
opt for an approach that is more suitable for small sensor
systems. With the chosen algorithms, a close adaptation of
the system error is possible, with the resulting FIS still being
applicable on small embedded sensor systems using small (8-
bit) microprocessors.

A. Unsupervised Rule Identification
An unsupervised clustering algorithm is used to perform

initial rule identification. Each cluster results in a fuzzy rule
representing the data in the cluster and its influences on the
quality analysis. Several fuzzy clustering methods are known.
The methods we are looking for should - among other aspects
- be able to determine the number of clusters automatically, as

we do not know how many rule mappings are required. Moun-
tain clustering [11] may be suitable, but is highly dependent
on the grid structure. We opt for a subtractive clustering [12]
instead. This clustering estimates every data point as a possible
cluster center, so there are no prior specifications. Chiu [13]
gives a description of the parameters that the subtractive
clustering needs for good cluster determination. We use the
subtractive clustering to determine the number of rules m, the
antecedent weights wj and the shape of the initial membership
functions Fij . Based on the initial membership functions a
linear regression can provide the consequent functions.

B. Supervised Parameter Tuning
With a initial rule structure after the clustering, the FIS

needs to be further specified. The next step is specifying
the functional linear consequence of each rule for which
only supervised methods are useful to converge towards an
optimal mapping. In a last step of training a neural network
representation of the preliminary FIS tunes the parameters to
a minimum error. This tuning also requires supervision.

1) Linear Regression with Least Squares: The weights aij

of the consequent functions fj are calculated through a linear
regression. The least squares method fits the functions fi into
the data set that needs to be adapted. A linear equation for
the differentiated error between designated and actual output -
which can be calculated with the rules and initial membership
functions the subtractive clustering identified - is solved for
the whole data set with a numeric method. The single value
decomposition (SVD) is used to solve the over-determined
linear equation. With the initial membership functions Fij , the
rules j and the linear consequences fj a neural fuzzy network
can be constructed. The neural fuzzy network is used to tune
the parameters aij , mij and σ2

ij in an iterative training towards
a minimum error.

2) Adaptive-Network-based FIS: A functionally identical
representation of an FIS as a neural network is an Adaptive-
Network-based FIS (ANFIS) [14]. Most of the network’s
neurons are operators and only the membership functions Fij

and the linear consequences fj are adaptable neurons. This
neural fuzzy network is used to tune the adaptable parameters
aij of the linear consequences, and mij and σ2

ij of the gaussian
membership functions. The tuning process is done iteratively
through a hybrid learning algorithm.

3) Hybrid Learning: The learning algorithm is hybrid since
it consists of a forward and a backward pass. In the backward
pass we carry out a backpropagation of the error between
designated and real output of the ANFIS to the layer of the
Gaussian membership functions. The backpropagation uses
a gradient descent method that searches a preferably global
minima for the error in an error hyperplane. The forward pass
performs another iteration of the least squares method with
the newly adapted membership functions from the backward
pass. The hybrid learning stops before an increasing of the
error for a different check data set is continuously observed.
The resulting ANFIS represents the qualitative non-normalized
TSK-FIS S.

VI. APPLICATION 1: QUALITY BASED FILTERING

One of the most irritating features of location systems can be
that the systems may suddenly jump to an entirely unrelated



position and back again. To both user and consecutive pro-
cessing system it can be desirable not to get such information
at all. As an example, a voice guided navigation systems
could easily get disturbing in such cases. Our quality measure
could minimize the effect of low quality measurements thus
leading to a more smooth system behavior. In this section we
experimentally show how the quality measure can be used to
eliminate measurement errors by filtering and how this could
stabilize location systems.

A. Adaption of Discrete Systems
A discrete system recognizes locations as classes or seman-

tic descriptions of an area, e.g. ’Office1’ or ’Main Hall’. Our
QoL parameter shows how much a given device - respectively
its location measurement - is within that area. We carried
out an experiment where RSSI measurements where used to
map to a location. The system uses pPart wireless sensor
nodes (Particle Computer, RFM TR1001 transceiver), RSSI
measurement was based on 3 packets received by one node
that are sent from another node with different sending field
strength. In our experiment, sending nodes where fixed in each
room sending out location packets constantly. A total of three
office spaces (about 6x6 qm each) where equipped with beacon
node devices.

In a first run, semantic location mapping was based on
counting packets from all beacon. Classification based based
on assigning the mobile nodes location to those room where
the most beacon packets where counted. It is well known from
literature that such assignment leads to poor results. In our
test case a correct classification was observed for 45% of all
cases. Although this method is simple, a filtering approach
with a threshold of τ = 0.8 leads to significant improvement
in correct classifications (45% → 92%).

In a second experimental run, we implemented a smarter
algorithm which also takes the RSSI levels of the received
nodes into account: the k-nearest-neighbors (KNN) algorithm.
We measured RSSI values on anker points in the rooms and
calculated representative vectors based on incoming signals
from all beacon nodes. Assignment to classes - and therefore to
areas in the offices - is calculated based on the similarity to the
k previously defined representative vectors. The performance
of this algorithm is much higher (60%) compared to packet
count, but by far not useful. The improvement in error after
filtering (τ = 0.8) is up to 99.9%.

The best algorithm we evaluated is a FIS that finds RSSI
fingerprint similarity for the different rooms. The algorithm
itself correctly classifies location for 98%. Additionally a
filtering can help eliminating nearly all faulty classifications.
A summary of the results can be seen in figure 4. In the
figure, bars indicate the percentage of correct classifications
for algorithm and algorithm combined with a filter on quality
measure. The quality for the three different locations for the
whole test data set are shown in figure 3. The difference in
quality indicates that the quality factor is state dependent,
meaning some rooms are better recognizable than others.

B. Adaption of Non-Discrete Systems
The same filtering mechanisms can also be applied to non-

discrete systems such as systems based on ultrasound distance
measurements. In this experiment we used the BRICK devices
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Fig. 4. Percent correctly detected semantic locations without (black) and with
filtering on q > 0.8 (grey) for (1) packet counting, (2) K Nearest Neighbors
and (3) FIS

[15] from the RELATE EU project. The device contains four
narrow band ultra-sound transducers and is able to perform
peer-to-peer distance and angle measure based on the time-of-
flight and amplitude measurement of ultrasound pulses. In the
location quality system measures a distance δt, a relative angle
αt and has some additional features about the environment−→u = u1, .., ul. The input vector for the system that performs
the quality analysis is defined in the following way:

−→v p̃ := (pt,
−→v t,

−→u t) = (δt, αt, v1, .., vn, u1, .., ul)

Each time the device measures a new input −→v t,i, the result-
ing distance, angle measurement, and environmental influences
are combined with the sensor input vector into a new vector−→v p̃. The quality estimation is solely based on the vector −→v p̃,
which is the interconnection between the location and the
qualitative system. The calculation of the quality measure is
done by a fuzzy inference system that holds information about
the correctness of previously determined locations based on
the input −→v t,i.

A first training and test set 1 was collected with nodes
at a constant distance of 30cm and an angle varying in
15◦ steps. The input of the quality analysis is the input the
distance measure was calculated combined with the measured
distance δt and the angle αt. The accuracy range used is
30cm±1cm. The training of the quality measure did not show
an improvement in adapting the location systems error after
3 epochs. A second quality measure was trained for an input
without the angle measure αt and evaluated with a second
test set. The separation of the accurate from the less accurate
distance values through the quality measure was much better
for the input which includes the angle αt.

With the density functions and the median cuts through
the threshold τ the probabilities for accurate and not accurate
measures can be calculated. A range is defined according to a
real location value p through offset ε as [p± ε] [7]. For both
test sets 1 and 2 the probabilities of separating the data are
shown in table I. Results indicate that for a distance measure
the quality always depends on the angle αt of the receiver
towards the sender.

In another test we tried to identify the quality of angle
measurements. Using the same data sets as above we trained
and tested the quality measure for the angle accuracy. With
an accuracy range of α± 5◦ for test set 3 (Figure 5, left plot)
the accurate angles are nearly fully separable from the angles
outside the accuracy range by using the quality measure and
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(KNN) and (right) Fuzzy Inference System (FIS).
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a threshold of τ = 0, 194, only a few samples are incorrectly
assigned. To find the threshold τ the method described in [7]
was used. The probabilities for this test set 3 are also shown
in table I. Since the accuracy was previously only given for
test data with a constant distance and a varying angle, a data
set was collected with varying distance and angle. This leads
to a test set 4. Corresponding quality measures can be seen
in Figure 6. The probabilities of separating the data are also
shown in table I. The results for test set 4 are not as good as
the ones for set 1, but filtering based on quality still shows
an improvement in the increase of accurate results. A last test
5 is used for angle α measurements and varying distances
and angles. A separation of accurate and not accurate angle
measurements is possible with high probabilities (table I, set
5).

C. Discussion: Classes vs. Measurements

In this section we applied a quality based filtering of
semantic location classes and relative location measurements,

Fig. 7. Floorplan with node layout (left) and picture of node at field trial

which shows that heterogenous systems can be analyzed in
quality. For semantic location classes a membership function,
and therefore a quality measure is positively obtainable. The
mapping of an algorithm onto a class can clearly be decided
in terms of class borders and set shapes if the mapping is
close to the class mean. A mapping close to the class borders
is not as distinct as a centric projection. These circumstances
are especially suited to be modelled with fuzzy sets. Also, the
FIS can adapt this kind of system errors in a especially precise
way, which is shown through the results in section VI-A.

Adapting the error of a continuous system like an ultrasound
relative positioning system which was used, is in the need
for a much more complex FIS than adapting classification
errors. The clustering needs to identify rules covering the
whole input space resulting in a increased amount of rules.
Here the modality of our approach is the key of solving this
problem, since the FIS can be divided into smaller parts. Many
FIS combined can cover the input space and be much smaller
than a big FIS covering it alone. The suitability of a FIS for
getting a measurements quality is shown in section VI-B for
FIS with a lot of rules or ones with a reduced set.

The statistical analysis indicates that the error characteristics
of sensors and algorithms can be obtained through our quality
analyzing system and be separable through it. Filtering the
location measurements or classifications is on the first level
of acquiring location data the only application showing the
efficiency of the quality measure. The following section shows
an other application, this time on the second level, for fusing
location data with an improvement of the quality measure.

VII. APPLICATION 2: LOCATION FUSION

One possible application of a quality measure is the use in
graphical presentation formats. For example, a fuzzy visual
representation of a point can be done using a circle [4],
thus indicating the uncertainty of a position. However, the
real advantages of associating a scalar quality value with



Set 1 Set 2 Set 3 Set 4 Set 5
δ ∧ α → qδ , ε = 1cm δ → qδ , ε = 1cm δ ∧ α → qα, ε = 5◦ δ ∧ α → qδ , ε = 5% δ ∧ α → qα, ε = 5◦

and τ = 0, 386 and τ = 0, 446 and τ = 0, 194 and τ = 0, 406 and τ = 0, 427

P(p̂ ∈ [p± ε]|q > τ) = 0, 996 = 0.572 ≈ 1 = 0, 556 = 0, 749
P(p̂ ∈ [p± ε]|q < τ) = 0, 002 = 0, 296 = 2, 18 · 10−5 = 0, 325 = 0, 168

P(p̂ /∈ [p± ε]|q < τ) = 0, 996 = 0.572 ≈ 1 = 0, 557 = 0, 750
P(p̂ /∈ [p± ε]|q > τ) = 0, 001 = 0, 132 = 4, 39 · 10−6 = 0, 118 = 0, 082

TABLE I
SEPARATION PROBABILITIES FOR DIFFERENT TEST SETS THROUGH QUALITY q AND THRESHOLD τ

information is its application in fusion algorithms. As depicted
in figure 8 the design of our quality measure allows us to
model and control the effects of fusion. In this section we
present a practical application of different fusion schemes
based on our quality measure. As an example of a widely
spread simple fusion algorithm for location system we use
the least squares method, which is typically used as linear
regression in multi-lateration approaches.

In a system like the ultrasound location presented in the
last section, each distance measurements δi can start at any
position p = (x, y) and measure a position (xi, yi) form
an circle equation (x − xi)2 + (y − yi)2 = δ2

i . Having
measurements of at least 3 independent locations, the position
p can be described by the linear equation system (2 ∗ (xi −
x0)2∗(yi−y0))∗p = x2

i−x2
0+y2

i −y2
0+δ2

0−δ2
i +ε of the form

Y = Xp + ε. The least square estimation of the position p̂
equation can be obtained by evaluating p̂ = (XT X)−1 XT Y .

We had previously used this algorithm to evaluate the
obtainable location accuracy in a real world application trial
at the training house of the Paris fire department with the
BRICK hardware. Figure 7 shows the deployment of 40
nodes on two floors in a building. The nodes were deployed
randomly in a 2m area of pre-recorded traces of a firemen
team entering the building. The scenario was originally used to
analyze the location accuracy in an ad-hoc deployed ultrasound
positioning systems. The problem of such ad-hoc systems is
that the sensors cannot be optimally deployed leading to a
variety situation with inaccurate and fake measurements. The
errors in the data set ranged from 1 to 4516 mm with an
average error of 312 mm. The top curve of figure 9 shows the
average and maximum errors that can be observed when using
measurement from three to eleven different measurements to
locate each node with the help of the others. The figure clearly
shows that the fusion of more measurements can improve the
error considerable by removing the systematic error.

Fig. 8. Methods for integrating quality systems (Q) with a fusion algorithm:
Independend(left), Filtering, Integrated (right)
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Fig. 9. Mean (left) and maximum (right) error of unweighted (∆), weighted
(+) and filtered least squares multi-lateration algorithm

A. Selective Fusion using Quality Filtering

Especially for a low number of measurements the error
using least squares regression to estimate the location is still
very high. We indicated as one of the problems that outliers
will destabilize the system considerably. Referring back to the
results from section VI we can use quality based filtering
to stabilize the location algorithm. As depicted in figure 8
B, the control method remains independent of the fusion
algorithm. In contrast to the previous scheme, the behavior
fusion algorithm is changed by controlling its input via a
threshold filter.

We took the data from a separate training data set and
implemented a quality FIS for an 5% error. According to
the method described in [7] we defined a filter threshold at
a quality of approximately 0.5. This threshold was used to
eliminate all equations with measurement of a quality below
that. In case there were less than three suitable measurements
we took the three best. The curves in the middle of figure 9
show the results. Except for the case of only three, where no
further reduction was possible, we were able to improve the
quality in all cases.

B. Quality based Fusion Control

The general problem of filtering data is that it also reduces
the chance to average out an error. Other research suggest,
that many inaccurate measurements can also be successfully
be used to improve the error [5]. The last experiment with
filtering has shown that this is not completely the case for
the used regression algorithm. However, we would expect that
there are cases when only unsuitable data is available using
it would do no harm. In such cases it can be beneficial to
use the quality measure as an input to the fusion algorithm
itself. In contrast to the selection process (figure 8 A), where
a quality control is implemented as an external controller,
we need to adjust the algorithm and expose the quality to it.



In case of multi-lateration we can simply accommodate this
fact by weighting equation by their quality. We modify the
regression by changing the equation to reflect the weighted
case: p̂ = (XT WX)−1XT WY and configure the weight
matrix to reflect qualities of each equation. We construct the
following fuzzy term (qδ0 ∨ qδ0) ∨ (qδi ∨ qδi) to describe the
quality of both quadratic distances in the equation. If we use
multiplication as the conjunctive fuzzy operators we get the
weight matrix W = diag(q2

δ0
∗q2

δi
). Figure 9 shows the results

of the weighted least squares regression. As expected, we are
able to combine the effects of statistic and dynamic error
elimination. The weighted regression method again performs
better than both previous algorithms. An interesting result is
that we were able to keep the maximum error for more than 9
nodes, more than one order of magnitude below the unweighed
case.

C. Discussion: Modularity vs. Integration

Integrating our quality measure into a multi-lateration
scheme in various ways shows the general flexibility of the
system. In this case it made sense to integrate the quality
measure into the algorithm itself, which partially contradicts
the modular design. However, in cases where this is not
possible or complicated we can still expect improvements from
filtering or at least calculate the resulting quality using fuzzy
logic. Furthermore the choice of the fuzzy representation as
value from 0 to 1 made it easy handle to the quality measure
algorithmically.

VIII. CONCLUSION AND FUTURE WORK

In the paper we presented a location quality measure that
is generally applicable to any black-box location system.
The quality system is interconnected with the actual location
system only through its input and output making it possible
to modularly construct and extend quality control location
systems. The automated construction of the fuzzy quality
system makes it adaptable to any specific characteristics of a
location system and its environment. In application cases we
showed that the quality measure can provide the information
on the accuracy for both discrete and non-discrete location
systems like RSSI-based semantic or ultrasound location at
run-time, both as primary quality indicator and to control
fusion.

The most definite next step will be to apply our work to
more sensors and location systems. We are especially inter-
ested in finding error correlations between different sensors,
so that we can take the input of, e.g. inertial sensors to estimate
the quality of the ultrasound system. We hope to also be able to
extract more features for a reliable classification of the error by
doing some automated pre-processing and feature selection on
the raw sensor data before inputting it into the quality system.
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