
An Extensible Modular Recognition Concept that
Makes Activity Recognition Practical

Martin Berchtold1, Matthias Budde2, Hedda Schmidtke2 and Michael Beigl2

1 Institute of Operating Systems and Computer Networks (IBR), TU Braunschweig
2 Institute of Telematics, Pervasive Computing Chair, Karlsruhe Institute of Technology (KIT)

Abstract. In mobile and ubiquitous computing, there is a strong need for sup-
porting different users with different interests, needs, and demands. Activity recog-
nition systems for context aware computing applications usually employ highly
optimized off-line learning methods. In such systems, a new classifier can only be
added if the whole recognition system is redesigned. For many applications that
is not a practical approach. To be open for new users and applications, we propose
an extensible recognition system with a modular structure. We will show that such
an approach can produce almost the same accuracy compared to a system that has
been generally trained (only 2 percentage points lower). Our modular classifier
system allows the addition of new classifier modules. These modules use Recur-
rent Fuzzy Inference Systems (RFIS) as mapping functions, that not only deliver
a classification, but also an uncertainty value describing the reliability of the clas-
sification. Based on the uncertainty value we are able to boost recognition rates.
A genetic algorithm search enables the modular combination.

1 Introduction

While many systems dealing with activity recognition in mobile and ubiquitous com-
puting have emerged over the years, there are still challenges to which no solution has
been presented so far. In this work, we try to tackle one of the biggest issues in mobile
computing: modular combination and extension of activity recognition systems. Con-
ventionally, activity recognition is mostly done with a single monolithic classifier. Such
classifiers are large and their usage is inflexible. Having large complex classifiers is
problematic, since in mobile computing the processing power of devices is limited and
the battery service life is an important factor. A comparison between monolithic and
modular classifiers has been conducted in [3]. Classification systems that require large
computing resources are not practical, as often real-time reaction is needed. E.g., our
prototype activity recognition system using a mobile phone should be able to react on a
detected activity in real-time, without disturbing the phone’s main functionality.

In activity recognition, inflexibility of classifiers is problematic. A general classifier
would need to recognize common daily activities (e.g. ‘walking’), but also activities
specific for a certain group of persons (e.g. ‘dancing’) or activities that are rarely car-
ried out (e.g. ‘climbing’). Overall, a general recognizer would need to be very complex,
covering hundreds of activities while only a few of them are actually required for one
person. It is well known that large complex recognizers tend to have lower performance
than small, focused classification systems. All this brings us to the need for a dynamic,



modular classification system, in which it is possible to add or remove classifier mod-
ules on demand. In this paper we propose a modular classifier approach based on Re-
current Fuzzy Inference Systems (RFIS). We give a detailed case study showing how
the system reacts if a new classifier set is added to a pre-existing one. We present that,
using a bit masking that is identified through a genetic algorithm, we can improve the
progression of old and new modules in a dynamic queue.

In other application fields, the combination of classifiers has been investigated for
many years now. In general, two approaches are differentiated: combination on the ab-
stract level and on the measurement level. In abstract level combination, classifiers are
computed separately and then logically combined, based on class labels or rankings of
classes [14]. In [16], classifiers are combined on the measurement level to recognize
handwritten Chinese characters. In their proposal, classifiers that map feature vectors
onto measurement vectors are combined. [2] proposes a similar attempt, also for hand-
written character recognition. Other publications on the topic of dynamic classifier com-
bination with similar approaches are [11] and [12]. All the aforementioned approaches
have in common, that either classifiers or other superimposed selection and activation
methods are needed to combine all classifiers. This requires that the whole set of classes
is known at design time, while in our system, selection and activation occur inherently
on the module level. This means that new classes – and therefore classifier modules –
can be added to a pre-existing classifier set and only one classifier is active at each point
in time. This considerably reduces resource consumption.

There has been a lot of research in activity recognition over the years. An exemplary
work is [13], in which a triaxial accelerometer sensor was used to detect eight activity
classes. Several algorithms in various combinations are investigated in four different
settings on their classification accuracy. Since the employed sensor is mounted on a
fixed position in the test persons pelvic region and the algorithms that are used do not
qualify for modular and dynamic usage, the recognition rates are not really compara-
ble. [6] and [10] both do activity recognition for mobile phones, where [6] only uses
sensors and resources native to the phone for sensor acquisition and classification. Both
approaches do not qualify for modular classification, nor do they recognize a significant
amount of activities with high accuracy.

The remainder of this paper is structured as follows: First, the modular classifier is
explained, with its RFIS mapping function, the machine learning algorithm to identify
the RFIS, and the modularity. Second, we describe how modularity can be enabled
via a bit vector masking, which is found through a genetic algorithm. The results are
presented in the evaluation section and the paper is concluded in the last section.

2 MODULAR RECURRENT FUZZY CLASSIFICATION

The classification process starts with (1) the feature extraction on the data delivered by
the sensors. Then (2) the resulting feature vector is reduced to a one-dimensional value
through a mapping function. This value is (3) assigned to a class, based on a set of
fuzzy numbers. Steps (2) and (3) are carried out by the modules. As mapping function
(step 2) we use a Recurrent Fuzzy Inference System (RFIS) [5]. Due to the used RFIS
and the fuzzy numbers-based classification, our modular classifier system provides an



uncertainty value, that is sensitive to the respective class that is detected. This solves
another problem of activity recognition, namely that patterns are only separable to a
certain degree, since the position of the mobile device (e.g. commodity phone) is not
always fixed. If an uncertainty measure is present for each classification, a filtering upon
this can improve reliability by far. Furthermore, with FISs a bit masking is possible,
which enables each dimension of every rule to be ‘activated’ or ‘deactivated’ separately.
Thereby, the classifier modules can be optimized to react to each other in a dynamic
queue. This is possible without losing the original capabilities of the RFIS.

In this section we first specify the RFIS, followed by an explanation of the machine
learning algorithm which identifies the mapping function on training data. Lastly, the
overall classifier system is explained and how its modularity works.

2.1 Recurrent Fuzzy Inference System

Takagi, Sugeno and Kang [15] (TSK-) FISs are fuzzy rule-based structures, which are
especially suited for automated construction. In TSK-FISs, the consequence of the im-
plication is not a functional membership to a fuzzy set, but a linear function, which is
defined according to the rule as follows:

IF µj(
−→v t) THEN fj(

−→v t), with fj(−→v t) := a1jv1 + ..+ anjvn + a(n+1)j (1)

Since we deal with highly correlated features, we employ covariant Gaussian member-
ship functions, which are defined with the overall output S of the TSK-FIS as follows:

µj(
−→v t) := e−

1
2 (
−→v t−−→m j)Σ

−1
j (−→v t−−→m j)

T

and S(−→v t) :=
∑m
j=1 µj(

−→v t)fj(−→v t)∑m
j=1 µj(

−→v t)
(2)

The outcome of the mapping at time t is fed back as input dimension n for the TSK-FIS
mapping at t+1. The recurrence not only delivers the desired uncertainty level, but also
stabilizes and improves the mapping accuracy. Instead of ‘Recurrent TSK-FIS’ we use
the simpler term RFIS in the remainder of this paper. More details on the RFIS can be
found in [5].

2.2 RFIS Identification Algorithm

The RFIS is completely described by the parameters aij of the linear functional con-
sequence fj and the mean vector −→mj and the covariance matrix Σj of the membership
functions µj . These values are identified upon an annotated training feature set via a
five step algorithm, is described in the following an in more detail in [9].

1. Data Annotation and Separation: The training data Vtr is separated according
to the class cj the data pairs belong to. Clustering on each subset delivers rules that
can be assigned to each class. 2. Clustering: A combination of Subtractive [7] and
Gath-Geva [8] clustering is used, where the Subtractive clustering gives the initial clus-
ter centers and the upper bound for the amount of clusters for the Gath-Geva clustering.
The selection of initial cluster centers for the Gath-Geva clustering is done via a genetic
algorithm according to the Mean Squared Error (MSE) of the resulting RFIS. The out-
put of the clustering algorithms combination is the amount of rules m, the mean vector



−→mj and covariance matrix Σj of the membership functions µj . 3. Least Squares: Lin-
ear regression identifies the parameters aij of the linear consequence function fj of the
rules j = 1, ..,m. Minimizing the quadratic error – the quadratic distance between the
desired output and the actual output – leads to an overdetermined linear equation to be
solved. 4. Recurrent Data Set: The output of the TSK-FIS S is now calculated over
the training data Vtr. This output is shifted by one, with a leading zero, and then added
to the training data set Vtr as additional dimension. All data pairs for time t > 1 have
the output of the FIS mapping of t − 1 in the recurrent dimension n. For this data set
the steps 1 to 3 are repeated. 5. Stop Criterion: There are two values qualifying for a
stop criterion: the mean quadratic error or the classification accuracy. While the mean
quadratic error mostly improves the expressiveness of the reliability value and less the
accuracy, optimizing on the classification accuracy only improves the percentage of
correct classifications. For our case study, we decided on a fixed number of iterations.

2.3 Modular Classification

Since the abilities of monolithic classifiers are limited, we use a modular approach to
cope with this problem. Instead of using one classifier to classify on all classes C, we
use several classifiers Mi : V → Ci (with i = 1, .., N ) each classifying on a small
subset Ci ⊆ C of classes. The subsets Ci are chosen according to the classes cij ∈
Ci semantics, therefore each subset Ci has its own meta semantic. We call this meta
semantic ‘conditional context’. To not only recognize the respective classes cij ∈ Ci,
but also the transition between classifiers Mi, each module yields a complementary
class ci as well. All classifiers are chained in a dynamic queue, where the last classifier
classifying on a class different from the complementary class is put first in queue. The
idea behind this re-organization of the classifier queue is, that modules are successive
in the queue, which are successive in recognition of input features. Therefore, when
the currently ‘active’ module recognizes the complementary class ci, preferably not the
whole queue needs to be tested for capabilities of classifying this feature vector−→v t, but
only the next module in the queue.

To train this kind of queued classifiers, we need to train them on the respective
classes cij ∈ Ci and on the complementary class ci. The training Vtri and check data
sets Vcki for a classifier module Mi are unified with a selection of input data pairs of
all other classifiers Vci ⊂

⋃
k 6=i Vtrk . This selection is labeled zero – which indicates the

complementary class ci – and added to the normal training and check data sets of this
classifier. The actual training and check data is therefore Vtr∪ci and Vck∪ci , which are
called Vtri and Vcki throughout the rest of this paper for reasons of simplicity.

The output of the RFIS S(−→v t) at time t is the normalized weighted sum of the
functions fj(−→v t) of the rules j. The returned values numerically encode the classes.
The assignment of the RFIS mapping result Si(−→v t) to a class is done fuzzily, so the
result is not only a class identifier, but also a membership, representing the reliability of
the classification process. Each class cij is interpreted by a set of a triangularly shaped
fuzzy numbers [1] (eqn. 3):

µcij (x) =

{
max(0, 1− cij−x

α ) , when x ≤ cij
max(0, 1− x−cij

α ) , when x > cij
(3)



The mean of the fuzzy number is the identifier cij itself. The crisp decision – i.e. which
identifier is the mapping outcome – is carried out based on the highest degree of mem-
bership to one of the fuzzy numbers in the class Ki (eqn. 4).

Ki(x) =


(ci1, µci1

(x)) , when µci1
(x) = mi(x)

...
...

(ci, µci
(x)) , when µci

(x) = mi(x)

, withmi(x) = max(maxj(µcij
(x)), µci

(x)) (4)

The overall output of the classifier module Mi (eqn. 5) is a tuple (cij , µcij ) of a class
identifier and the membership to it, where cij ∈ Ci ∪ ci and µcij ∈ [0, 1].

Mi(
−→v t) := Ki(Si(−→v t)) (5)

3 ENABLING MODULARITY

In this paper we focus on the modular combination of many fuzzy classifiers, classi-
fying on subsets Ci of the overall recognized set C of classes. Especially, we are an-
alyzing the capabilities of adding new classifiers modules and therefore new classes
to a pre-existing classifier module set. This is not possible without an adaption of the
pre-existing set of modules, since the modules are aware of each other, so they can
work together in a dynamic queue. This awareness is residing in the recognition of the
previously described complementary class, which also needs to be trained on.

3.1 Generalization on new Modules

When adding a new classifier module to an existing classification system we need to
modify the state transition in the dynamic queue. This transition is done when the active
module Mi recognizes the complementary class ci (=̂ 0). Since adding new modules
presumes that no data for identifying the complementary classes of the old modules
is available, the old modules are not able to detect a transition onto the new modules.
This means that the new modules rarely get activated (detection errors or mapping far
outside the model) and therefore have no chance to be part of the classification.

3.2 Bit Vector Adaption Mechanism

If new classifier modules are added to the existing queue, the old ones need to be
adapted, so that they recognize transitions to the new classifiers. Through an adap-
tion technique, in which the dimensions of each rule for each pre-existing classifier
module are ‘activated’ or ‘deactivated’, transition capabilities improve without chang-
ing the classification accuracy. The original classifier module is preserved and can be
restored at any time. The optimal combinations of ‘active/inactive’ rule dimensions is
searched for with a genetic algorithm, since the full search has an exponential runtime.
The data for optimum search is the training data that the new modules were identified
on, combined with the original training data.

The adaption is done via a bit vector, that specifies the ‘active’ and ‘inactive’ di-
mensions of each rule for one module Mi. Therefore the bit vector bitMi

for module



Mi, which has n input dimensions and mi rules, has a length of bi := n ·mi. To use
the bit vector, an interpretation function I(Mi(

−→v t), bitMi
) is defined, that ‘switches’

the rules dimensions temporarily, without changing the module Mi permanently. The
interpretation function I is defined as a function mapping a module M ∈ F(Rn,R)
together with a bit vector bitM ∈ {0, 1}∗ of appropriate length to a module M′. More
details on this bit vector approach can be found in [4].

3.3 Genetic Algorithm Search Space

To determine the respective classifier module’s bit vector, a genetic algorithm is used.
The space that has to be searched is 2bi for module Mi. A complete search would there-
fore have a runtime of O(2bi), which makes it impossible to calculate in a reasonable
amount of time. In our experience, the genetic algorithm can find a suboptimal, but ap-
propriate solution in a time span that is acceptable for our application. Nevertheless, we
are currently investigating methods to limit the search space.

4 EVALUATION

For evaluation we use a typical mobile computing device, the commodity phone. Nowa-
days commodity phones come with a variety of sensors, such a microphone, proximity
sensor, GPS and accelerometers. We focus on accelerometer sensors, since with these
sensors we can recognize most types of activity events. The phone is required to be with
the user, e.g. in his pocket or held in his hand. With our modular classifier approach, we
not only can recognize activity classes, but also the place the phone is positioned on.
We call this ‘conditional context’ and get this directly through the respective activated
classifier module. We need this conditional context to reach high recognition rates, as
recognized acceleration patterns from the same activity differ heavily with it.

4.1 Application

The device chosen by us is the ‘OpenMoko Freerunner’ phone which comes with two
3-D accelerometer sensors. The sensors have a sampling rate of about 100Hz. With a
window size of 8 samples we end up with 12.5 feature vectors per second. The features
are mean and variance, since they are efficiently calculable and enable good recognition
results. With this feature extraction, the resulting feature vector has 12 dimensions.
Adding the recursive dimension makes a total of 13 dimensions. This feature vector
is mapped onto the respective activity class via the currently ‘active’ module. If the
active module classifies onto the complementary class, the next module is activated for
this feature vector. This procedure is repeated for this feature vector until one of the
modules classifies onto a class different from the complementary one.1 This classifier
module is then put first in queue and the next feature vector is processed. To increase

1 in case all classifiers including the last one classify onto ci, the overall output is the com-
plementary class. This means the feature vector cannot be classified correctly by the given
queue.



reliability – and thereby accuracy – filtering upon the uncertainty is done. The filtering
reduces the amount of output classes, but for most applications a few classes per second
are more than enough, where the reliability is most important. Here we assume that most
activities are not changing faster than in seconds.

The original classifier module queue classifies onto ten classes and recognizes four
conditional contexts. To evaluate the addition of new classifiers, two more modules are
put in queue. These recognize five classes and two conditional contexts. All activity
classes, conditional contexts and respective classifier modules are shown in table 1.

Conditional Context Class Class Classifier
Context No. Module

Phone in users user is sitting 1
trouser pocket: user is standing 2 M1

no movement user is lying 3

Phone in users user is walking 4
trouser pocket: user is climbing stairs 5 M2

movement user is cycling 6

Phone on table: no movement 7 M3

Conditional Context Class Class Classifier
Context No. Module

Phone in users just holding 8
hand: talking on phone 9 M4

typing text message 10

Phone in users user is sitting in bus 11
trouser pocket: user is standing in bus 12

M5

Phone in users user is dancing (style 1) 13
trouser pocket: user is dancing (style 2) 14 M6

dancing user is dancing (style 3) 15

Table 1. Conditional contexts, classes and classifier modules for the acceleration sensor.

The training data Vtri for classifier module Mi consisted of 400 data pairs and the
check data Vcki of 200 pairs for each class cij . The data for training the complementary
class ci consisted of 800 and for the check data of 400 pairs, which was randomly
selected out of the training and check data for the other classifiers. Both sets Vtri and
Vcki were randomized in slices of 30 pairs, so the recurrence could be trained and tested.
Each classifier modules’ Mi RFIS mapping function Si was trained for 100 epochs, after
which the RFIS achieving the best classification accuracy for combination of training
and check data was chosen.

The evaluation data Vev had about 2000 data pairs per class, so 160 seconds per
activity. This evaluation set was also randomized according to slices of 20 data pairs
(1, 67 seconds), which in our experience is the quickest transition occurring between
activities. Since most of the false classifications are occurring when changing from
one activity class to another (due to recurrence), this is a stress test for the classifier
modules. In a real application we estimate even better results than presented in the
following, because activities change less often.

4.2 Evaluation Results

First we have a closer look into the results of classification, when all classifier modules
get trained on a collective data set. When no filtering upon the uncertainty value is done,
the overall recognition rate lies at only 58%. This is too low for practical use, but with
our recurrent fuzzy classifier approach, we can improve the results significantly. As
mentioned before, activity data from sources without fixed position is hardly separable.
For this a filtering is needed, where the classifications with low reliability are separated
from the recognitions with high reliability.

With the filtering upon the uncertainty value with a threshold of τ = 0.96, we
can boost the overall recognition rate by 27.4 pp (percentage points) up to 85,4%. The



91%︷ ︸︸ ︷ 75%︷ ︸︸ ︷
M1 M2 M3 M4 M5 M6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 99.7 0.0 0.4 0.1 1.5 2.2 0.4 0.0 0.0 1.1 0.4 5.1 0.0 1.5 5.2
2 0.0 90.9 0.1 0.0 0.0 2.1 0.0 0.0 0.0 0.3 0.3 0.0 0.4 0.7 0.7
3 0.0 0.0 98.9 0.0 0.0 5.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 3.0
4 0.0 0.1 0.0 92.6 1.5 0.6 0.0 0.0 0.0 0.3 0.0 0.2 6.1 2.2 0.7
5 0.0 0.1 0.0 1.0 49.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 17.0 0.7 0.0
6 0.0 0.0 0.1 0.0 0.0 88.1 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 6.7
7 0.0 0.0 0.0 0.1 1.5 0.0 98.2 0.0 1.3 3.4 0.0 0.0 0.0 2.2 7.5
8 0.2 0.2 0.0 0.0 0.5 0.3 0.0 98.3 0.1 0.0 0.0 0.0 0.4 2.9 3.7
9 0.0 0.0 0.0 0.1 0.0 0.1 0.2 0.6 98.3 0.3 0.0 0.0 0.0 2.2 0.0
10 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0 91.3 0.0 0.0 0.0 0.0 0.0
11 0.0 0.0 0.0 0.0 1.0 0.1 0.0 0.0 0.1 0.0 99.1 0.0 0.4 0.7 0.7
12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 86.9 0.0 5.8 9.7
13 0.1 8.8 0.4 5.9 43.9 0.4 0.0 0.0 0.1 1.3 0.1 0.2 75.1 0.7 0.0
14 0.0 0.0 0.0 0.1 0.0 0.6 0.6 1.0 0.0 2.1 0.1 1.7 0.4 67.2 14.9
15 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 5.9 0.0 13.1 47.0

69.3 60.3 73.7 15.1 6.2 26.5 56.8 42.1 50.3 27.7 40.8 25.0 9.2 4.4 4.6
Table 2. Theoretical optimum without knowledge of all training data. Filter threshold: τ = 0.96.
Overall recognition rate: 85,4%.

corresponding confusion matrix is shown in table 2. This is a recognition rate for a
system which can be used in real applications. But the filtering reduces the amount
of classifications the recognition system has as output. The percentage of remaining
classifications for each class after filtering is displayed in each table in the last row of the
confusion matrices. Since the classifier modules originally produce 12.5 classifications
per second, a percentage of less than 8% remaining classifications could result in an
effective output of less than one class per second. Usually, a person’s activities do not
change that fast, but it is still possible that this could result in missing an activity event.

95%︷ ︸︸ ︷ 17%︷ ︸︸ ︷
M1 M2 M3 M4 M5 M6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 99.3 0.2 1.7 0.4 0.8 2.8 0.5 0.2 0.2 4.5 8.6 0.0 0.8 7.7 2.3
2 0.0 98.9 0.9 0.4 0.1 0.6 0.0 0.1 0.2 0.7 73.8 1.2 0.3 16.9 6.8
3 0.0 0.0 92.9 0.0 0.0 0.2 0.0 0.1 0.0 0.0 0.0 26.0 0.0 26.2 34.1
4 0.0 0.0 0.0 86.4 2.1 0.0 0.1 0.0 0.1 0.0 0.0 0.0 4.1 1.5 0.0
5 0.0 0.3 1.9 12.9 95.4 0.2 0.2 0.1 0.3 1.5 0.0 0.6 92.2 20.0 18.2
6 0.0 0.0 1.7 0.0 0.6 95.4 0.0 0.0 0.0 0.0 0.8 0.0 0.2 6.2 6.8
7 0.2 0.0 0.0 0.0 0.0 0.0 99.0 0.0 0.0 11.2 0.4 0.0 0.0 0.0 0.0
8 0.3 0.2 0.6 0.0 0.4 0.7 0.1 99.4 0.0 2.2 0.0 15.0 0.9 13.8 20.5
9 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.1 99.2 0.0 0.0 1.2 0.3 0.0 2.3
10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 79.9 0.0 0.0 0.2 0.0 0.0
11 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 16.4 0.0 0.0 3.1 0.0
12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 55.5 0.0 1.5 2.3
13 0.0 0.4 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0
14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 3.1 0.0
15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.8

51.0 75.7 14.3 29.4 26.9 21.4 59.1 79.3 67.5 9.8 7.5 3.8 22.0 2.1 1.5
Table 3. Modular approach without the need for knowledge of all training data in all training
steps that is not masked with a bit vector. Threshold: τ = 0.96. Overall recognition rate: 68,6%.

Taking a closer look, we can see that most of the classes (9 out of 15) are recognized
with an accuracy of over 90%, as required for activity recognition applications. The



classes with lower recognition percentages could have overlapping membership func-
tions in the RFIS mapping, which is indicated through mutually misclassified classes. A
good example for this circumstance is given by classes no. 5 and no. 13, where 43, 9%
of data for classifier no. 5 is misclassified on no. 13 and 17% from no. 13 on no. 5.
These two provide a good example for classes whose patterns are hardly separable. The
overall recognition rates in our evaluation are significantly lowered due to the fact that
we have classes with overlapping membership functions in our system.

Next, we examine the classification accuracies when a new set of classifiers is added
to a pre-existing one. The original classifier set consisted of modules M1 to M4. To this,
the set containing modules M5 and M6 is added. The results of the union without bit
masking the classifiers are shown in table 3. Here, the recognition rate for the original
modules is 95% as required. The added modules M5 and M6 are rarely activated, be-
cause the only case where they could be activated is when misclassifications occur and
all original modules recognize the complementary class. After the genetic algorithm

89%︷ ︸︸ ︷ 73%︷ ︸︸ ︷
M′1 M′2 M′3 M′4 M5 M6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 99.6 0.1 0.3 0.2 1.4 3.1 0.3 0.0 0.0 0.8 0.3 5.1 0.0 1.5 5.8
2 0.0 92.1 0.1 0.0 0.0 2.7 0.0 0.0 0.0 0.0 0.2 0.1 0.4 0.8 2.2
3 0.0 0.0 96.1 0.0 0.0 5.9 0.0 0.0 0.2 0.0 0.0 0.0 0.4 0.0 2.9
4 0.0 0.2 0.2 87.2 7.7 0.3 0.0 0.1 0.0 0.3 0.1 0.3 12.4 3.8 1.4
5 0.0 0.1 0.1 1.6 46.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 16.3 0.0 0.7
6 0.2 0.0 2.7 0.0 0.0 84.9 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 5.8
7 0.0 0.1 0.0 0.2 1.9 0.0 98.1 0.0 2.1 1.4 0.0 0.0 0.0 2.3 7.2
8 0.1 0.2 0.0 0.0 0.5 0.3 0.0 98.4 0.1 0.0 0.0 0.0 0.4 3.1 3.6
9 0.0 0.0 0.0 0.2 0.0 0.2 0.2 0.6 97.3 0.5 0.0 0.0 0.0 2.3 0.0
10 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 94.8 0.0 0.0 0.0 0.0 0.0
11 0.0 0.0 0.0 0.0 1.0 0.2 0.0 0.0 0.1 0.0 99.1 0.0 0.0 0.8 0.7
12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 86.4 0.0 6.9 8.7
13 0.1 7.4 0.5 10.0 41.1 0.6 0.0 0.0 0.1 0.8 0.2 0.2 69.0 0.0 0.0
14 0.0 0.0 0.0 0.2 0.0 1.0 0.8 0.9 0.0 1.4 0.1 1.5 0.4 64.1 13.8
15 0.0 0.0 0.0 0.2 0.0 0.6 0.1 0.0 0.0 0.0 0.0 6.5 0.0 14.5 47.1

69.0 59.9 65.7 7.9 6.6 24.6 57.9 43.2 47.5 26.8 42.4 24.6 8.6 4.2 4.8
Table 4. Modular combination without the need for knowledge of all training data in all training
steps, masked with a bit vector. Threshold: τ = 0.96. Overall recog. rate: 84,0% (optimal 85%).

has found a bit masking for the original classifiers, the recognition rates increase signif-
icantly (table 4): the overall rate for all classes is just 2 pp lower compared to the upper
limit we achieved when training all modules together. The still high recognition rates
for the ten original classes indicate, that the original classification capabilities of these
modules have not changed much. A recognition rate of 6 pp less compared to the non
bit masked classifier modules and an increase to 15 recognized classes is a really good
result compared to other activity recognition systems.

5 CONCLUSIONS

We have presented an approach for modular classification in activity recognition feasi-
ble for mobile devices, where Recurrent Fuzzy Inference Systems (RFIS) are utilized.
This approach solves two main issues in practical activity recognition. One is the addi-
tion of new classifier modules to a pre-existing set of modules. We solve this problem



with a bit vector masking of the classifier modules, so that the new set of modules are
recognized in the dynamic queue of classifiers. The other issue is, that activity classes
are often hardly separable, especially when the sensor data sources have no fixed posi-
tion. This problem is solved through the used RFIS in combination with a filtering. The
filtering separates reliable from unreliable classifications according to the uncertainty
value provided by the RFIS mapping in the classifier modules.

We have shown in a case study, that the modular combination of new and pre-
existing classifiers has nearly the same recognition rates (only 2 pp less accurate) as a
classification system where all modules get trained together. Also the filtering on the
uncertainty value achieves a boost of recognition up to 95%, which in the end makes
activity recognition practical.

ACKNOWLEDGEMENTS
This work has been (partially) supported by the NTH School for IT Ecosystems.

References
1. AbuAarqob, O.A., Shawagfeh, N.T., AbuGhneim, O.A.: Functions defined on fuzzy real

numbers according to zadehs extension. International Mathematical Forum 3(16) (2008)
2. Aksela, M., Laaksonen, J.: Adaptive combination of adaptive classifiers for handwritten char-

acter recognition. Pattern Recogn. Lett. 28(1), 136–143 (2007)
3. Berchtold, M., Riedel, T., Beigl, M., Decker, C.: Awarepen - classfication probability and

fuzziness in a context aware application. Ubiquitous Intelligence and Computing (2008)
4. Berchtold, M., Riedel, T., van Laerhoven, K., Decker, C.: Gath-geva specification and genetic

generalization of takagi-sugeno-kang fuzzy models. Proceedings of the SMC08 (2008)
5. Berchtold, M., Beigl, M.: Increased robustness in context detection and reasoning using un-

certainty measures: Concept and application. In: Proceedings of the AmI ’09 (2009)
6. Brezmes, T., Gorricho, J.L., Cotrina, J.: Activity recognition from accelerometer data on a

mobile phone. In: Proceedings of the IWANN ’09. pp. 796–799 (2009)
7. Chiu, S.: Method and software for extracting fuzzy classification rules by subtractive clus-

tering. IEEE Control Systems Magazine, 1996, vol. pp. 461-465 (1996)
8. Gath, I., Geva, A.B.: Unsupervised optimal fuzzy clustering. IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol 11(7), pp 773-781 (1989)
9. Gnther, H., Simrany, F.E., Berchtold, M., Beigl, M.: A tool chain for a lightweight, robust

and uncertainty-based context. In: ARCS – CoSDEO Workshop (2010)
10. Györbı́ró, N., Fábián, A., Hományi, G.: An activity recognition system for mobile phones.

Mobile Networks and Applications 14(1), 82–91 (2009)
11. Ianakiev, K.G., Govindaraju, V.: Architecture for classifier combination using entropy mea-

sures. In: Proceedings of the MCS ’00 (2000)
12. Kirchhoff, K., Bilmes, J.A.: Dynamic classifier combination in hybrid speech recognition

systems using utterance-level confidence values. In: ICASSP ’99. pp. 693–696 (1999)
13. Ravi, N., D, N., Mysore, P., Littman, M.L.: Activity recognition from accelerometer data. In:

In Proceedings of the 17th IAAI. pp. 1541–1546 (2005)
14. Singh, S., Singh, M.: A dynamic classifier selection and combination approach to image

region labelling. Signal Processing: Image Communication 20(3) (2005)
15. Tagaki, T., Sugeno, M.: Fuzzy identification of systems and its application to modelling and

control. Systems, Man and Cybernetics (1985)
16. Xiao, B., Wang, C., Dai, R.: Adaptive combination of classifiers and its application to hand-

written chinese character recognition. Int. Conference on Pattern Recognition (2000)


